Improved Clonal Selection Algorithm Combined with Ant Colony Optimization
نویسندگان
چکیده
Both the clonal selection algorithm (CSA) and the ant colony optimization (ACO) are inspired by natural phenomena and are effective tools for solving complex problems. CSA can exploit and explore the solution space parallely and effectively. However, it can not use enough environment feedback information and thus has to do a large redundancy repeat during search. On the other hand, ACO is based on the concept of indirect cooperative foraging process via secreting pheromones. Its positive feedback ability is nice but its convergence speed is slow because of the little initial pheromones. In this paper, we propose a pheromone-linker to combine these two algorithms. The proposed hybrid clonal selection and ant colony optimization (CSA-ACO) reasonably utilizes the superiorities of both algorithms and also overcomes their inherent disadvantages. Simulation results based on the traveling salesman problems have demonstrated the merit of the proposed algorithm over some traditional techniques. key words: clonal selection algorithm, ant colony optimization, traveling salesman problem, hybridization
منابع مشابه
Hybrid Ant Colony Algorithm Clonal Selection in the Application of the Cloud's Resource Scheduling
In this paper, thinking over characteristics of ant colony optimization Algorithm, taking into account the characteristics of cloud computing, combined with clonal selection algorithm (CSA) global optimum advantage of the convergence of the clonal selection algorithm (CSA) into every ACO iteration, speeding up the convergence rate, and the introduction of reverse mutation strategy, ant colony o...
متن کاملHybrid Improved Dolphin Echolocation and Ant Colony Optimization for Optimal Discrete Sizing of Truss Structures
This paper presents a robust hybrid improved dolphin echolocation and ant colony optimization algorithm (IDEACO) for optimization of truss structures with discrete sizing variables. The dolphin echolocation (DE) is inspired by the navigation and hunting behavior of dolphins. An improved version of dolphin echolocation (IDE), as the main engine, is proposed and uses the positive attributes of an...
متن کاملOptimization of Combined Heat and Power Systems using a Hybrid Algorithm of Ant and Bee Colony Optimization
Abstract: In the last few years, due to the development of the new equipment in power systems, challenges have appeared in their planning and operation. One of these issues is the development of combined heat and power (CHP) units. These units have the capability to generate heat and electricity simultaneously according to their limitations. Hence, it is necessary for them to think about the ar...
متن کاملOptimal Distributed Generation (DG) Allocation in Distribution Networks using an Improved Ant Colony Optimization (ACO) Algorithm
Abstract: The development of distributed generation (DGs) units in recent years have created challenges in the operation of power grids, especially distribution networks. One of these issues is the optimal allocation (location and capacity) of these units in distribution networks. In this thesis, a method based on the improved ant colony optimization algorithm is presented to solve the problem ...
متن کاملA Hybrid Optimization Algorithm Based on Ant Colony and Immune Principles
This paper proposes a hybrid optimization method based on the ant colony and clonal selection principles, in which the cloning and mutation operations are embedded in the ant colony to enhance its search capability. The novel algorithm is employed to deal with a few benchmark optimization problems under both static and dynamic environments. Simulation results demonstrate the remarkable advantag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 91-D شماره
صفحات -
تاریخ انتشار 2008